Ace+Method+Development+Kits
Numéro de catalogue:
(AATB1141)
Fournisseur:
AAT BIOQUEST INC
Description:
AAT Bioquest's mFluor™ dyes are developed for multicolor flow cytometry-focused applications.
UOM:
1 * 5 mg
New Product
Fournisseur:
AAT BIOQUEST INC
Description:
AAT Bioquest's iFluor® dyes are developed for labeling proteins, in particular, antibodies.
Numéro de catalogue:
(PRSI90-113)
Fournisseur:
ProSci Inc.
Description:
Lipocalin-2 is an iron-trafficking protein involved in multiple processes such as apoptosis, innate immunity and renal development.
UOM:
1 * 1 EA
Numéro de catalogue:
(PRSI26-569)
Fournisseur:
ProSci Inc.
Description:
Members of the ARID protein family, including ARID5A, have diverse functions but all appear to play important roles in development, tissue-specific gene expression, and regulation of cell growth.Members of the ARID protein family, including ARID5A, have diverse functions but all appear to play important roles in development, tissue-specific gene expression, and regulation of cell growth (Patsialou et al., 2005 [PubMed 15640446]).
UOM:
1 * 50 µG
Numéro de catalogue:
(PRSI26-570)
Fournisseur:
ProSci Inc.
Description:
Members of the ARID protein family, including ARID5A, have diverse functions but all appear to play important roles in development, tissue-specific gene expression, and regulation of cell growth.Members of the ARID protein family, including ARID5A, have diverse functions but all appear to play important roles in development, tissue-specific gene expression, and regulation of cell growth (Patsialou et al., 2005 [PubMed 15640446]).
UOM:
1 * 50 µG
Numéro de catalogue:
(AATB13468)
Fournisseur:
AAT BIOQUEST INC
Description:
The non-fluorescent R110 substrates generate the bright green fluorescent rhodamine 110 product that has Ex/Em = 494/521 nm, and can be easily detected with a FITC filter set.
UOM:
1 * 1 mg
New Product
Numéro de catalogue:
(PRSI27-239)
Fournisseur:
ProSci Inc.
Description:
The gene encodes the DMRT1 protein is found in a cluster with two other members of the gene family, having in common a zinc finger-like DNA-binding motif (DM domain). The DM domain is an ancient, conserved component of the vertebrate sex-determining pathway that is also a key regulator of male development in flies and nematodes. This gene exhibits a gonad-specific and sexually dimorphic expression pattern. Defective testicular development and XY feminization occur when this gene is hemizygous. This suggested that DMRT1 may be required for testis development.This gene is found in a cluster with two other members of the gene family, having in common a zinc finger-like DNA-binding motif (DM domain). The DM domain is an ancient, conserved component of the vertebrate sex-determining pathway that is also a key regulator of male development in flies and nematodes. This gene exhibits a gonad-specific and sexually dimorphic expression pattern. Defective testicular development and XY feminization occur when this gene is hemizygous. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.
UOM:
1 * 50 µG
Numéro de catalogue:
(BOSSBS-1377R-FITC)
Fournisseur:
Bioss
Description:
Matrix metalloproteinase 26 preprotein; gelatinase A; 70kD type IV collagenase; gelatinase neutrophil. Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes as well as in disease processes. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26 degrades type IV collagen, the major structural component of basement membranes. The enzyme plays a role in endometrial menstrual breakdown, regulation of vascularization and the inflammatory response.Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodelling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26, also known as Matrilysin 2, was first cloned from human fetal cells, and identified as an MMP most closely related to MMP7 (Matrilysin 1). The homology between MMP7 and MMP26 is low (only 38% identical), thus the functions are unlikely to be similar. Homology is much higher (48% identical) for the comparable region of MMP12, but MMP26 appears to have broader substrate specificity than does MMP12. MMP26, like MMP7, lacks the hemopexin domain common to the other MMPs, but contains a Propeptide domain, cysteine switch activation site, followed by a catalytic domain, and a short vestige of the hinge region. MMP26 is apparently not glycosylated, and is a secreted MMP. Tissue analysis shows MMP26 most strongly in placenta and uterus, but also in kidney cells, lung cells, lymphocytes and lung or endometrial carcinoma cells. MMP26 is proteolytically active, cleaving casein in zymograms, and gelatin, a1PI, fibrinogen, fibronectin, vitronectin, type IV collagen, and apparently activating MMP9.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1377R-CY3)
Fournisseur:
Bioss
Description:
Matrix metalloproteinase 26 preprotein; gelatinase A; 70kD type IV collagenase; gelatinase neutrophil. Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes as well as in disease processes. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26 degrades type IV collagen, the major structural component of basement membranes. The enzyme plays a role in endometrial menstrual breakdown, regulation of vascularization and the inflammatory response.Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodelling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26, also known as Matrilysin 2, was first cloned from human fetal cells, and identified as an MMP most closely related to MMP7 (Matrilysin 1). The homology between MMP7 and MMP26 is low (only 38% identical), thus the functions are unlikely to be similar. Homology is much higher (48% identical) for the comparable region of MMP12, but MMP26 appears to have broader substrate specificity than does MMP12. MMP26, like MMP7, lacks the hemopexin domain common to the other MMPs, but contains a Propeptide domain, cysteine switch activation site, followed by a catalytic domain, and a short vestige of the hinge region. MMP26 is apparently not glycosylated, and is a secreted MMP. Tissue analysis shows MMP26 most strongly in placenta and uterus, but also in kidney cells, lung cells, lymphocytes and lung or endometrial carcinoma cells. MMP26 is proteolytically active, cleaving casein in zymograms, and gelatin, a1PI, fibrinogen, fibronectin, vitronectin, type IV collagen, and apparently activating MMP9.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1377R-CY7)
Fournisseur:
Bioss
Description:
Matrix metalloproteinase 26 preprotein; gelatinase A; 70kD type IV collagenase; gelatinase neutrophil. Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes as well as in disease processes. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26 degrades type IV collagen, the major structural component of basement membranes. The enzyme plays a role in endometrial menstrual breakdown, regulation of vascularization and the inflammatory response.Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodelling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26, also known as Matrilysin 2, was first cloned from human fetal cells, and identified as an MMP most closely related to MMP7 (Matrilysin 1). The homology between MMP7 and MMP26 is low (only 38% identical), thus the functions are unlikely to be similar. Homology is much higher (48% identical) for the comparable region of MMP12, but MMP26 appears to have broader substrate specificity than does MMP12. MMP26, like MMP7, lacks the hemopexin domain common to the other MMPs, but contains a Propeptide domain, cysteine switch activation site, followed by a catalytic domain, and a short vestige of the hinge region. MMP26 is apparently not glycosylated, and is a secreted MMP. Tissue analysis shows MMP26 most strongly in placenta and uterus, but also in kidney cells, lung cells, lymphocytes and lung or endometrial carcinoma cells. MMP26 is proteolytically active, cleaving casein in zymograms, and gelatin, a1PI, fibrinogen, fibronectin, vitronectin, type IV collagen, and apparently activating MMP9.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1377R-A750)
Fournisseur:
Bioss
Description:
Matrix metalloproteinase 26 preprotein; gelatinase A; 70kD type IV collagenase; gelatinase neutrophil. Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes as well as in disease processes. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26 degrades type IV collagen, the major structural component of basement membranes. The enzyme plays a role in endometrial menstrual breakdown, regulation of vascularization and the inflammatory response.Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodelling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. MMP26, also known as Matrilysin 2, was first cloned from human fetal cells, and identified as an MMP most closely related to MMP7 (Matrilysin 1). The homology between MMP7 and MMP26 is low (only 38% identical), thus the functions are unlikely to be similar. Homology is much higher (48% identical) for the comparable region of MMP12, but MMP26 appears to have broader substrate specificity than does MMP12. MMP26, like MMP7, lacks the hemopexin domain common to the other MMPs, but contains a Propeptide domain, cysteine switch activation site, followed by a catalytic domain, and a short vestige of the hinge region. MMP26 is apparently not glycosylated, and is a secreted MMP. Tissue analysis shows MMP26 most strongly in placenta and uterus, but also in kidney cells, lung cells, lymphocytes and lung or endometrial carcinoma cells. MMP26 is proteolytically active, cleaving casein in zymograms, and gelatin, a1PI, fibrinogen, fibronectin, vitronectin, type IV collagen, and apparently activating MMP9.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-5368R-A680)
Fournisseur:
Bioss
Description:
Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1. Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. May also mediate the development of insulin resistance by regulating activation of transcription factors. Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase. In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes. Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA. Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin. Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilise microtubules. MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease. Plays an important role in ERBB2-dependent stabilisation of microtubules at the cell cortex. Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair. Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA).
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-5368R-A488)
Fournisseur:
Bioss
Description:
Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1. Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. May also mediate the development of insulin resistance by regulating activation of transcription factors. Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase. In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes. Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA. Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin. Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules. MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease. Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair. Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA).
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1910R-CY5)
Fournisseur:
Bioss
Description:
Membrane Receptors Transforming growth factor beta is a multifunctional cytokine known to modulate several tissue development and repair processes, including cell differentiation, cell cycle progression, cellular migration, adhesion, and extracellular matrix production. There are 3 forms encoded by separate genes TGFB1, TGFB2, and TGFB3. The diverse effects of TGF beta are mediated by the TGF beta receptors and cell surface binding proteins. In addition to type I TGF beta receptor (TGFBR1) and type II (TFGBR2), type III (TGF beta III receptor) has been identified. It is a glycoprotein that binds TGF beta and exists in both a membrane bound and a soluble form. It may serve as a receptor accessory molecule in both the TGF beta and fibroblast growth factor systems. TGF beta III receptor lacks a recognizable signaling domain and has no clearly defined role in TGF beta signaling. Endothelial cells undergoing epithelial mesenchymal transformation express TGF beta III receptor, and TGF beta III receptor specific antisera inhibits mesenchyme formation and migration. Misexpression of TGF beta III receptor in nontransforming ventricular endothelial cells conferrs transformation in response to TGFB2. These results support a model where TGF beta III receptor localizes transformation in the heart and plays an essential, nonredundant role in TGF beta signaling. TGF beta III receptor, or beta glycan, can function as an inhibin coreceptor with ActRII. TGF beta III receptor binds inhibin with high affinity and enhances binding in cells coexpressing ActRII and TGF beta III receptor. Inhibin forms crosslinked complexes with both recombinant and endogenously expressed TGF beta III receptor and ActRII. TGF beta III receptor confers inhibin sensitivity to cell lines that otherwise respond poorly to this hormone.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1910R-CY5.5)
Fournisseur:
Bioss
Description:
Membrane Receptors Transforming growth factor beta is a multifunctional cytokine known to modulate several tissue development and repair processes, including cell differentiation, cell cycle progression, cellular migration, adhesion, and extracellular matrix production. There are 3 forms encoded by separate genes TGFB1, TGFB2, and TGFB3. The diverse effects of TGF beta are mediated by the TGF beta receptors and cell surface binding proteins. In addition to type I TGF beta receptor (TGFBR1) and type II (TFGBR2), type III (TGF beta III receptor) has been identified. It is a glycoprotein that binds TGF beta and exists in both a membrane bound and a soluble form. It may serve as a receptor accessory molecule in both the TGF beta and fibroblast growth factor systems. TGF beta III receptor lacks a recognizable signaling domain and has no clearly defined role in TGF beta signaling. Endothelial cells undergoing epithelial mesenchymal transformation express TGF beta III receptor, and TGF beta III receptor specific antisera inhibits mesenchyme formation and migration. Misexpression of TGF beta III receptor in nontransforming ventricular endothelial cells conferrs transformation in response to TGFB2. These results support a model where TGF beta III receptor localizes transformation in the heart and plays an essential, nonredundant role in TGF beta signaling. TGF beta III receptor, or beta glycan, can function as an inhibin coreceptor with ActRII. TGF beta III receptor binds inhibin with high affinity and enhances binding in cells coexpressing ActRII and TGF beta III receptor. Inhibin forms crosslinked complexes with both recombinant and endogenously expressed TGF beta III receptor and ActRII. TGF beta III receptor confers inhibin sensitivity to cell lines that otherwise respond poorly to this hormone.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-12890R-CY7)
Fournisseur:
Bioss
Description:
Non-receptor tyrosine-protein kinase implicated in the regulation of a variety of signaling pathways that control the differentiation and maintenance of normal epithelia, as well as tumor growth. Function seems to be context dependent and differ depending on cell type, as well as its intracellular localization. A number of potential nuclear and cytoplasmic substrates have been identified. These include the RNA-binding proteins: KHDRBS1/SAM68, KHDRBS2/SLM1, KHDRBS3/SLM2 and SFPQ/PSF; transcription factors: STAT3 and STAT5A/B and a variety of signaling molecules: ARHGAP35/p19RhoGAP, PXN/paxillin, BTK/ATK, STAP2/BKS. Associates also with a variety of proteins that are likely upstream of PTK6 in various signaling pathways, or for which PTK6 may play an adapter-like role. These proteins include ADAM15, EGFR, ERBB2, ERBB3 and IRS4. In normal or non-tumorigenic tissues, PTK6 promotes cellular differentiation and apoptosis. In tumors PTK6 contributes to cancer progression by sensitizing cells to mitogenic signals and enhancing proliferation, anchorage-independent survival and migration/invasion. Association with EGFR, ERBB2, ERBB3 may contribute to mammary tumor development and growth through enhancement of EGF-induced signaling via BTK/AKT and PI3 kinase. Contributes to migration and proliferation by contributing to EGF-mediated phosphorylation of ARHGAP35/p19RhoGAP, which promotes association with RASA1/p12RasGAP, inactivating RhoA while activating RAS. EGF stimulation resulted in phosphorylation of PNX/Paxillin by PTK6 and activation of RAC1 via CRK/CrKII, thereby promoting migration and invasion. PTK6 activates STAT3 and STAT5B to promote proliferation. Nuclear PTK6 may be important for regulating growth in normal epithelia, while cytoplasmic PTK6 might activate oncogenic signaling pathways. Isoform 2 inhibits PTK6 phosphorylation and PTK6 association with other tyrosine-phosphorylated proteins.
UOM:
1 * 100 µl
Appel de prix
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Ces articles ne peuvent être ajoutés au Panier. Veuillez contacter votre service client ou envoyer un e-mail à vwr.be@vwr.com
Une documentation supplémentaire peut être nécessaire pour l'achat de cet article. Un représentant de VWR vous contactera si nécessaire.
Ce produit a été bloqué par votre organisation. Contacter votre service d'achat pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
|
|||||||||