Insert+plates+and+inserts
Numéro de catalogue:
(BOSSBS-6919R-A350)
Fournisseur:
Bioss
Description:
The coiled-coil domain is a structural motif found in proteins that are involved in a diverse array of biological functions such as the regulation of gene expression, cell division, membrane fusion and drug extrusion and delivery. CCDC69 (Coiled-coil domain-containing protein 69) is a 296 amino acid protein that is encoded by a gene which maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Chromosome 5 is associated with Cockayne syndrome through the ERCC8 gene and familial adenomatous polyposis through the adenomatous polyposis coli (APC) tumor suppressor gene. Treacher Collins syndrome is also chromosome 5-associated and is caused by insertions or deletions within the TCOF1 gene. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.
UOM:
1 * 100 µl
Fournisseur:
Biotium
Description:
Recognizes a protein of 18-35 kDa, identified as CD90 (also known as Thy1). CD90 is a member of the immunoglobulin superfamily. It may contribute to inhibition of proliferation/differentiation of hematopoietic stem cells and neuron memory formation in the CNS. It consists of a single Ig domain (112 amino acids; 25-35 kDa) inserted into the cell membrane via a GPI anchor. Expressed by hematopoietic stem cells and neurons in all species studied. Its highly expressed in connective tissue and various fibroblast and stromal cell lines, expressed on all thymocytes and peripheral T cells in mice, but in humans expressed only on small % fetal thymocytes, 10-40% of CD34 cells in bone marrow, and <1% of CD3 CD4 lymphocytes in peripheral circulation. It is also expressed by human lymph node HEV endothelium but not other endothelia. Lastly, it is expressed by a limited number of lymphoblastoid and leukemic cell lines.
Fournisseur:
Biotium
Description:
Recognizes a protein of 18-35 kDa, identified as CD90 (also known as Thy1). CD90 is a member of the immunoglobulin superfamily. It may contribute to inhibition of proliferation/differentiation of hematopoietic stem cells and neuron memory formation in the CNS. It consists of a single Ig domain (112 amino acids; 25-35 kDa) inserted into the cell membrane via a GPI anchor. Expressed by hematopoietic stem cells and neurons in all species studied. Its highly expressed in connective tissue and various fibroblast and stromal cell lines, expressed on all thymocytes and peripheral T cells in mice, but in humans expressed only on small % fetal thymocytes, 10-40% of CD34 cells in bone marrow, and <1% of CD3 CD4 lymphocytes in peripheral circulation. It is also expressed by human lymph node HEV endothelium but not other endothelia. Lastly, it is expressed by a limited number of lymphoblastoid and leukemic cell lines.
Numéro de catalogue:
(BOSSBS-8496R-FITC)
Fournisseur:
Bioss
Description:
RFESD, also known as Rieske domain-containing protein, is a 157 amino acid protein that binds one 2Fe-2S cluster per subunit. Involved in metal ion binding, RFESD contains one Rieske domain. The RFESD gene is conserved in chimpanzee, dog, cow, mouse, rat, chicken and zebrafish, and maps to human chromosome 5q15. Chromosome 5 makes up approximately 6% of the human genome and contains 181 million base pairs, which encode 1,000 genes. Chromosome 5 is associated with Cockayne syndrome through the ERCC8 gene and familial adenomatous polyposis through the adenomatous polyposis coli (APC) tumor suppressor gene. Treacher Collins syndrome is caused by insertions or deletions within the TCOF1 gene and is also associated with chromosome 5. Deletion of 5q or chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-4969R-CY5.5)
Fournisseur:
Bioss
Description:
ANXA2R (annexin-2 receptor), also known as AX2R or C5orf39, is a 193 amino acid protein that is widely expressed and may act as an annexin II receptor on marrow stromal cells to induce osteoclast formation. In addition, ANXA2R is highly expressed in lymphocytes and is also found in resting CD4+ and CD8+ T cells. The gene encoding ANXA2R maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Chromosome 5 is associated with Cockayne syndrome through the ERCC8 gene and familial adenomatous polyposis through the adenomatous polyposis coli (APC) tumor suppressor gene. Treacher Collins syndrome is also chromosome 5-associated and is caused by insertions or deletions within the TCOF1 gene. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-4969R-CY5)
Fournisseur:
Bioss
Description:
ANXA2R (annexin-2 receptor), also known as AX2R or C5orf39, is a 193 amino acid protein that is widely expressed and may act as an annexin II receptor on marrow stromal cells to induce osteoclast formation. In addition, ANXA2R is highly expressed in lymphocytes and is also found in resting CD4+ and CD8+ T cells. The gene encoding ANXA2R maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Chromosome 5 is associated with Cockayne syndrome through the ERCC8 gene and familial adenomatous polyposis through the adenomatous polyposis coli (APC) tumor suppressor gene. Treacher Collins syndrome is also chromosome 5-associated and is caused by insertions or deletions within the TCOF1 gene. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-11885R-CY5)
Fournisseur:
Bioss
Description:
Hox, Pbx and Meis families of transcription factors form heteromeric complexes and bind DNA through specific homeobox domains. Hox proteins are involved in regulating tissue patterning during development, and are also expressed in lineage- and stage-specific patterns during adult hematopoietic differentiation and in leukemias. The Hox proteins, which include paralog groups 1-10, have a low intrinsic binding affinity for DNA and are instead associated into cooperative DNA binding complexes with Pbx or the Pbx- related Meis proteins, which result in an enhanced Hox-DNA binding affinity and an increased selectivity for the binding site. Both Meis1 and Meis2 (also known as Meis-related gene 1 or Mrg1) are members of the TALE (“three amino acid loop extensionâ€) family of homeodomain-containing proteins. In addition to binding with Hox proteins, Meis1 also forms heterodimers with the ubiquitously expressed Pbx proteins, including Pbx1, Pbx2 and Pbx3, and these complexes contain distinct DNA-binding specificities. Like Hox and Pbx proteins, Meis1 is implicated in oncogenesis, as it is overexpressed as a result of adjacent retroviral insertion in BHX-2 myeloid leukemias. Two Meis-related proteins, Meis2 and Meis3 (also designated Mrg1 and Mrg2, respectively), possess largely similar sequence identity with Meis1 and are expressed in normal tissues and myeloid leukemias. In the pancreas, Meis2 preferentially associates with Pbx1, and together they associate with the pancreas-specific homeodomain factor, Pdx1, to repress Pdx1-induced transcriptional activation.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-11889R-CY5)
Fournisseur:
Bioss
Description:
Hox, Pbx and Meis families of transcription factors form heteromeric complexes and bind DNA through specific homeobox domains. Hox proteins are involved in regulating tissue patterning during development, and are also expressed in lineage- and stage-specific patterns during adult hematopoietic differentiation and in leukemias. The Hox proteins, which include paralog groups 1-10, have a low intrinsic binding affinity for DNA and are instead associated into cooperative DNA binding complexes with Pbx or the Pbx- related Meis proteins, which result in an enhanced Hox-DNA binding affinity and an increased selectivity for the binding site. Both Meis1 and Meis2 (also known as Meis-related gene 1 or Mrg1) are members of the TALE (“three amino acid loop extensionâ€) family of homeodomain-containing proteins. In addition to binding with Hox proteins, Meis1 also forms heterodimers with the ubiquitously expressed Pbx proteins, including Pbx1, Pbx2 and Pbx3, and these complexes contain distinct DNA-binding specificities. Like Hox and Pbx proteins, Meis1 is implicated in oncogenesis, as it is overexpressed as a result of adjacent retroviral insertion in BHX-2 myeloid leukemias. Two Meis-related proteins, Meis2 and Meis3 (also designated Mrg1 and Mrg2, respectively), possess largely similar sequence identity with Meis1 and are expressed in normal tissues and myeloid leukemias. In the pancreas, Meis2 preferentially associates with Pbx1, and together they associate with the pancreas-specific homeodomain factor, Pdx1, to repress Pdx1-induced transcriptional activation.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-3804R-A647)
Fournisseur:
Bioss
Description:
Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-11885R-FITC)
Fournisseur:
Bioss
Description:
Hox, Pbx and Meis families of transcription factors form heteromeric complexes and bind DNA through specific homeobox domains. Hox proteins are involved in regulating tissue patterning during development, and are also expressed in lineage- and stage-specific patterns during adult hematopoietic differentiation and in leukemias. The Hox proteins, which include paralog groups 1-10, have a low intrinsic binding affinity for DNA and are instead associated into cooperative DNA binding complexes with Pbx or the Pbx- related Meis proteins, which result in an enhanced Hox-DNA binding affinity and an increased selectivity for the binding site. Both Meis1 and Meis2 (also known as Meis-related gene 1 or Mrg1) are members of the TALE (“three amino acid loop extensionâ€) family of homeodomain-containing proteins. In addition to binding with Hox proteins, Meis1 also forms heterodimers with the ubiquitously expressed Pbx proteins, including Pbx1, Pbx2 and Pbx3, and these complexes contain distinct DNA-binding specificities. Like Hox and Pbx proteins, Meis1 is implicated in oncogenesis, as it is overexpressed as a result of adjacent retroviral insertion in BHX-2 myeloid leukemias. Two Meis-related proteins, Meis2 and Meis3 (also designated Mrg1 and Mrg2, respectively), possess largely similar sequence identity with Meis1 and are expressed in normal tissues and myeloid leukemias. In the pancreas, Meis2 preferentially associates with Pbx1, and together they associate with the pancreas-specific homeodomain factor, Pdx1, to repress Pdx1-induced transcriptional activation.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-11885R-A488)
Fournisseur:
Bioss
Description:
Hox, Pbx and Meis families of transcription factors form heteromeric complexes and bind DNA through specific homeobox domains. Hox proteins are involved in regulating tissue patterning during development, and are also expressed in lineage- and stage-specific patterns during adult hematopoietic differentiation and in leukemias. The Hox proteins, which include paralog groups 1-10, have a low intrinsic binding affinity for DNA and are instead associated into cooperative DNA binding complexes with Pbx or the Pbx- related Meis proteins, which result in an enhanced Hox-DNA binding affinity and an increased selectivity for the binding site. Both Meis1 and Meis2 (also known as Meis-related gene 1 or Mrg1) are members of the TALE (“three amino acid loop extensionâ€) family of homeodomain-containing proteins. In addition to binding with Hox proteins, Meis1 also forms heterodimers with the ubiquitously expressed Pbx proteins, including Pbx1, Pbx2 and Pbx3, and these complexes contain distinct DNA-binding specificities. Like Hox and Pbx proteins, Meis1 is implicated in oncogenesis, as it is overexpressed as a result of adjacent retroviral insertion in BHX-2 myeloid leukemias. Two Meis-related proteins, Meis2 and Meis3 (also designated Mrg1 and Mrg2, respectively), possess largely similar sequence identity with Meis1 and are expressed in normal tissues and myeloid leukemias. In the pancreas, Meis2 preferentially associates with Pbx1, and together they associate with the pancreas-specific homeodomain factor, Pdx1, to repress Pdx1-induced transcriptional activation.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-11889R-FITC)
Fournisseur:
Bioss
Description:
Hox, Pbx and Meis families of transcription factors form heteromeric complexes and bind DNA through specific homeobox domains. Hox proteins are involved in regulating tissue patterning during development, and are also expressed in lineage- and stage-specific patterns during adult hematopoietic differentiation and in leukemias. The Hox proteins, which include paralog groups 1-10, have a low intrinsic binding affinity for DNA and are instead associated into cooperative DNA binding complexes with Pbx or the Pbx- related Meis proteins, which result in an enhanced Hox-DNA binding affinity and an increased selectivity for the binding site. Both Meis1 and Meis2 (also known as Meis-related gene 1 or Mrg1) are members of the TALE (“three amino acid loop extensionâ€) family of homeodomain-containing proteins. In addition to binding with Hox proteins, Meis1 also forms heterodimers with the ubiquitously expressed Pbx proteins, including Pbx1, Pbx2 and Pbx3, and these complexes contain distinct DNA-binding specificities. Like Hox and Pbx proteins, Meis1 is implicated in oncogenesis, as it is overexpressed as a result of adjacent retroviral insertion in BHX-2 myeloid leukemias. Two Meis-related proteins, Meis2 and Meis3 (also designated Mrg1 and Mrg2, respectively), possess largely similar sequence identity with Meis1 and are expressed in normal tissues and myeloid leukemias. In the pancreas, Meis2 preferentially associates with Pbx1, and together they associate with the pancreas-specific homeodomain factor, Pdx1, to repress Pdx1-induced transcriptional activation.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-3896R-HRP)
Fournisseur:
Bioss
Description:
Superoxide dismutase (SOD) is an antioxidant enzyme involved in the defense system against reactive oxygen species (ROS). SOD catalyzes the dismutation reaction of superoxide radical anion (O2-) to hydrogen peroxide, which is then catalyzed to innocuous O2 and H2O by glutathione peroxidase and catalase. Several classes of SOD have been identified. These include intracellular copper, zinc SOD (Cu, Zn-SOD/SOD-1), mitochondrial manganese SOD (Mn-SOD/SOD-2) and extracellular Cu, Zn-SOD (EC-SOD/SOD-3). SOD1 is found in all eukaryotic species as a homodimeric 32 kDa enzyme containing one each of Cu and Zn ion per subunit. The manganese containing 80 kDa tetrameric enzyme SOD2, is located in the mitochondrial matrix in close proximity to a primary endogenous source of superoxide, the mitochondrial respiratory chain. SOD3 is a heparin-binding multimer of disulfide-linked dimers, primarily expressed in human lungs, vessel walls and airways. SOD4 is a copper chaperone for superoxide dismutase (CCS), which specifically delivers Cu to copper/zinc superoxide dismutase. CCS may activate copper/zinc superoxide dismutase through direct insertion of the Cu cofactor.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-3804R)
Fournisseur:
Bioss
Description:
Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-11889R-A647)
Fournisseur:
Bioss
Description:
Hox, Pbx and Meis families of transcription factors form heteromeric complexes and bind DNA through specific homeobox domains. Hox proteins are involved in regulating tissue patterning during development, and are also expressed in lineage- and stage-specific patterns during adult hematopoietic differentiation and in leukemias. The Hox proteins, which include paralog groups 1-10, have a low intrinsic binding affinity for DNA and are instead associated into cooperative DNA binding complexes with Pbx or the Pbx- related Meis proteins, which result in an enhanced Hox-DNA binding affinity and an increased selectivity for the binding site. Both Meis1 and Meis2 (also known as Meis-related gene 1 or Mrg1) are members of the TALE (“three amino acid loop extensionâ€) family of homeodomain-containing proteins. In addition to binding with Hox proteins, Meis1 also forms heterodimers with the ubiquitously expressed Pbx proteins, including Pbx1, Pbx2 and Pbx3, and these complexes contain distinct DNA-binding specificities. Like Hox and Pbx proteins, Meis1 is implicated in oncogenesis, as it is overexpressed as a result of adjacent retroviral insertion in BHX-2 myeloid leukemias. Two Meis-related proteins, Meis2 and Meis3 (also designated Mrg1 and Mrg2, respectively), possess largely similar sequence identity with Meis1 and are expressed in normal tissues and myeloid leukemias. In the pancreas, Meis2 preferentially associates with Pbx1, and together they associate with the pancreas-specific homeodomain factor, Pdx1, to repress Pdx1-induced transcriptional activation.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-15208R-A488)
Fournisseur:
Bioss
Description:
C5orf49 is a With 181 million base pairs encoding around 1,000 genes, chromosome 5 is about 6% of human genomic DNA. It is associated with Cockayne syndrome through the ERCC8 gene and familial adenomatous polyposis through the adenomatous polyposis coli (APC) tumor suppressor gene. Treacher Collins syndrome is also chromosome 5 associated and is caused by insertions or deletions within the TCOF1 gene. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome. Deletion of 5q or chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome. The C5orf49 gene product has been provisionally designated C5orf49 pending further characterization.
UOM:
1 * 100 µl
Appel de prix
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Ces articles ne peuvent être ajoutés au Panier. Veuillez contacter votre service client ou envoyer un e-mail à vwr.be@vwr.com
Une documentation supplémentaire peut être nécessaire pour l'achat de cet article. Un représentant de VWR vous contactera si nécessaire.
Ce produit a été bloqué par votre organisation. Contacter votre service d'achat pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
|
|||||||||