Garder ma session ouverte ?
Expiré dans 
La session est expirée
Votre session a expiré. Pour votre sécurité, VWR vous a déconnecté.
Voulez-vous vous connecter à nouveau?
  • Résultats des produits
  • Catégorie de produit
  • Critères
  • Fournisseur
  • Affiner fournisseurs
    Trier par:

  • Articles en promotion
Votre recherche pour:

Masterflex+Single-use+Flow+Sensor


287 569  les résultats ont été trouvés

SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-HORIZONTAL
 
 
SearchResultCount:"287569"
  Vue liste Recherche Easy View Vue simple
Trier par:
 
 
 
 


Fournisseur:  Bioss
Description:   Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and DSS1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180).
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-1922R-CY5.5)

Fournisseur:  Bioss
Description:   Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes. In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo. Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair. Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo. Preferentially binds to positive supercoiled DNA. Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology. Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-3271R)

Fournisseur:  Bioss
Description:   c-Met, a member of the tyrosine kinase superfamily, is the receptor for hepatocyte growth factor, also known as scatter factor (HGF/SF). The mature c-Met protein is a disulfide-linked heterodimer with Mr=190 kDa composed of a heavily glycosylated alpha subunit that is completely extracellular in localization, and a beta subunit comprising an extracellular ligand binding domain, a single transmembrane domain, and a cytoplasmic tyrosine kinase domain. Cells expressing c-Met include epithelial cells, endothelial cells, blood cells of various types, and glomerular mesenchymal cells.HGF/SF binding to c-Met stimulates receptor dimerization and the phosphorylation of numerous residues within the receptor’s cytoplasmic domain. Signaling proteins that are phosphorylated and/or localized in response to c-Met phosphorylation include: Grb2, Shc, Cbl, Crk, cortactin, paxillin, GAB1, PI3K, FAK, Src, Ras, ERK1 and 2, JNK, PLC gamma, AKT, and STAT3. HGF/SF stimulation of c-Met expressing cells enhances proliferation, migration, morphogenesis, and protease synthesis, characteristics that are associated with invasive cell phenotype. Many types of cancer exhibit sustained c-Met stimulation, overexpression, or mutation, including carcinomas of the colon, breast, ovary, lung, liver, prostate, thyroid, kidney, as well as melanomas and sarcomas. In addition to cancer studies, other research areas in which c-Met is under investigation include organogenesis, organ regeneration, angiogenesis and surgical wound healing.
UOM:  1 * 100 µl
Fournisseur:  VWR Collection
Description:   Personne n’a une morphologie parfaitement symétrique. C’est pourquoi une majorité de personnes ont des problèmes de dos, accompagnés parfois d’une sensation de jambes lourdes. La réponse à ce problème réside dans les principales caractéristiques de ce siège. Une bonne position de travail est avant tout une posture dynamique qui facilite la circulation sanguine. Les caractéristiques du siège contribuent à rééquilibrer le corps de manière naturelle, et à améliorer la circulation sanguine dans les jambes. Les chaises et tabourets de laboratoire VWR® Ergonomic s’adaptent automatiquement au corps et aux mouvements de l’utilisateur.
Numéro de catalogue: (BOSSBS-6217R-A350)

Fournisseur:  Bioss
Description:   Nuclear receptor that binds DNA as a monomer to ROR response elements (RORE) containing a single core motif half-site 5'-AGGTCA-3' preceded by a short A-T-rich sequence. Key regulator of cellular differentiation, immunity, peripheral circadian rhythm as well as lipid, steroid, xenobiotics and glucose metabolism. Considered to have intrinsic transcriptional activity, have some natural ligands like oxysterols that act as agonists (25-hydroxycholesterol) or inverse agonists (7-oxygenated sterols), enhancing or repressing the transcriptional activity, respectively. Recruits distinct combinations of cofactors to target gene regulatory regions to modulate their transcriptional expression, depending on the tissue, time and promoter contexts. Regulates the circadian expression of clock genes such as CRY1, ARNTL/BMAL1 and NR1D1 in peripheral tissues and in a tissue-selective manner. Competes with NR1D1 for binding to their shared DNA response element on some clock genes such as ARNTL/BMAL1, CRY1 and NR1D1 itself, resulting in NR1D1-mediated repression or RORC-mediated activation of the expression, leading to the circadian pattern of clock genes expression. Therefore influences the period length and stability of the clock. Involved in the regulation of the rhythmic expression of genes involved in glucose and lipid metabolism, including PLIN2 and AVPR1A. Negative regulator of adipocyte differentiation through the regulation of early phase genes expression, such as MMP3. Controls adipogenesis as well as adipocyte size and modulates insulin sensitivity in obesity. In liver, has specific and redundant functions with RORA as positive or negative modulator of expression of genes encoding phase I and Phase II proteins involved in the metabolism of lipids, steroids and xenobiotics, such as SULT1E1.
UOM:  1 * 100 µl

Fournisseur:  Bioss
Description:   Human immunodeficiency virus (HIV) is a retrovirus that can lead to a condition in which the immune system begins to fail, leading to opportunistic infections. HIV primarily infects vital cells in the human immune system such as helper T cells(specifically CD4+ T cells), macrophages and dendritic cells. HIV infection leads to low levels of CD4+ T cells through three main mechanisms: firstly, direct viral killing of infected cells; secondly, increased rates of apoptosis in infected cells; and thirdly, killing of infected CD4+ T cells by CD8 cytotoxic lymphocytes that recognize infected cells. When CD4+ T cell numbers decline below a critical level, cell-mediated immunity is lost, and the body becomes progressively more susceptible to opportunistic infections. HIV was classified as a member of the genus Lentivirus, part of the family of Retroviridae. Lentiviruses have many common morphologies and biological properties. Many species are infected by lentiviruses, which are characteristically responsible for long-duration illnesses with a long incubation period. Lentiviruses are transmitted as single-stranded, positive-sense, enveloped RNA viruses. Upon entry of the target cell, the viral RNA genome is converted to double-stranded DNA by a virally encoded reverse transcriptase that is present in the virus particle. This viral DNA is then integrated into the cellular DNA by a virally encoded integrase so that the genome can be transcribed. Once the virus has infected the cell, two pathways are possible: either the virus becomes latent and the infected cell continues to function, or the virus becomes active and replicates, and a large number of virus particles are liberated that can then infect other cells.
UOM:  1 * 100 µl

Fournisseur:  Bioss
Description:   Synaptotagmins are a large family of synaptic vesicle type III integral membrane proteins that function as regulators of both exocytosis and endocytosis and are involved in neurotransmitter secretion from small secretory vesicles. Synaptotagmin XI, also known as SYT11 (Synaptotagmin-11), is a 431 amino acid protein that localizes to the membrane and is expressed ubiquitously with highest expression in brain and lung. Like other Synaptotagmin proteins, Synaptotagmin XI is involved in the calcium-dependent exocytosis of secretory vesicles and is thought to act as a calcium sensor during vesicular trafficking. Synaptotagmin XI contains two C2 domains through which it can bind either three calcium ions or the zinc-finger protein Parkin (a juvenile Parkinson’s disease gene product), the latter of which causes the polyubiquitination and subsequent degradation of Synaptotagmin XI by the proteasome complex. Defects in the gene encoding Synaptotagmin XI are implicated in a number of neurological disorders, including schizophrenia and Parkinson’s disease.
UOM:  1 * 100 µl

Fournisseur:  Bioss
Description:   Synaptotagmins are a large family of synaptic vesicle type III integral membrane proteins that function as regulators of both exocytosis and endocytosis and are involved in neurotransmitter secretion from small secretory vesicles. Synaptotagmin XI, also known as SYT11 (Synaptotagmin-11), is a 431 amino acid protein that localizes to the membrane and is expressed ubiquitously with highest expression in brain and lung. Like other Synaptotagmin proteins, Synaptotagmin XI is involved in the calcium-dependent exocytosis of secretory vesicles and is thought to act as a calcium sensor during vesicular trafficking. Synaptotagmin XI contains two C2 domains through which it can bind either three calcium ions or the zinc-finger protein Parkin (a juvenile Parkinson’s disease gene product), the latter of which causes the polyubiquitination and subsequent degradation of Synaptotagmin XI by the proteasome complex. Defects in the gene encoding Synaptotagmin XI are implicated in a number of neurological disorders, including schizophrenia and Parkinson’s disease.
UOM:  1 * 100 µl
Numéro de catalogue: (SPIRML-12)

Fournisseur:  SPIRING ENTERPRISES
Description:   Medium links for single bonds
UOM:  1 * 25 ST
Source d'approvisionnement du marché Il s'agit d'un élément MarketSource. Des frais supplémentaires peuvent s'appliquer.
Numéro de catalogue: (BOSSBS-11378R-A488)

Fournisseur:  Bioss
Description:   Syntaxin 13 is an integral membrane protein that belongs to the t-SNARE family, a group of proteins involved in protein transport. Confocal immunofluoresence and electron microscopy studies have shown that syntaxin 13 is primarily localized to tubular early and recycling endosomes, where it colocalizes with transferrin receptor, and it is also localized in endosomal vacuoles. Syntaxin 13 has been found to be expressed in all tissues, with higher levels of the protein found in brain, lung, spleen, thymus and testes. Immunoprecipitation studies show that syntaxin 13 complexes with beta-SNAP, VAMP2/3, and SNAP25. The binding of this complex to alpha-SNAP and NSF is terminated in the presence of ATP. These results suggest that syntaxin 13 is a SNARE protein which mediates the recycling protein flow through tubulo vesicular recycling endosomes.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-11378R-A350)

Fournisseur:  Bioss
Description:   Syntaxin 13 is an integral membrane protein that belongs to the t-SNARE family, a group of proteins involved in protein transport. Confocal immunofluoresence and electron microscopy studies have shown that syntaxin 13 is primarily localized to tubular early and recycling endosomes, where it colocalizes with transferrin receptor, and it is also localized in endosomal vacuoles. Syntaxin 13 has been found to be expressed in all tissues, with higher levels of the protein found in brain, lung, spleen, thymus and testes. Immunoprecipitation studies show that syntaxin 13 complexes with beta-SNAP, VAMP2/3, and SNAP25. The binding of this complex to alpha-SNAP and NSF is terminated in the presence of ATP. These results suggest that syntaxin 13 is a SNARE protein which mediates the recycling protein flow through tubulo vesicular recycling endosomes.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-6941R-A647)

Fournisseur:  Bioss
Description:   Catalytic component of the RAG complex, a multiprotein complex that mediates the DNA cleavage phase during V(D)J recombination. V(D)J recombination assembles a diverse repertoire of immunoglobulin and T-cell receptor genes in developing B and T lymphocytes through rearrangement of different V (variable), in some cases D (diversity), and J (joining) gene segments. In the RAG complex, RAG1 mediates the DNA-binding to the conserved recombination signal sequences (RSS) and catalyzes the DNA cleavage activities by introducing a double-strand break between the RSS and the adjacent coding segment. RAG2 is not a catalytic component but is required for all known catalytic activities. DNA cleavage occurs in 2 steps: a first nick is introduced in the top strand immediately upstream of the heptamer, generating a 3'-hydroxyl group that can attack the phosphodiester bond on the opposite strand in a direct transesterification reaction, thereby creating 4 DNA ends: 2 hairpin coding ends and 2 blunt, 5'-phosphorylated ends. The chromatin structure plays an essential role in the V(D)J recombination reactions and the presence of histone H3 trimethylated at 'Lys-4' (H3K4me3) stimulates both the nicking and haipinning steps. The RAG complex also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B lymphocytes. The introduction of DNA breaks by the RAG complex on one immunoglobulin allele induces ATM-dependent repositioning of the other allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. In addition to its endonuclease activity, RAG1 also acts as a E3 ubiquitin-protein ligase that mediates monoubiquitination of histone H3. Histone H3 monoubiquitination is required for the joining step of V(D)J recombination.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-6941R-A680)

Fournisseur:  Bioss
Description:   Catalytic component of the RAG complex, a multiprotein complex that mediates the DNA cleavage phase during V(D)J recombination. V(D)J recombination assembles a diverse repertoire of immunoglobulin and T-cell receptor genes in developing B and T-lymphocytes through rearrangement of different V (variable), in some cases D (diversity), and J (joining) gene segments. In the RAG complex, RAG1 mediates the DNA-binding to the conserved recombination signal sequences (RSS) and catalyzes the DNA cleavage activities by introducing a double-strand break between the RSS and the adjacent coding segment. RAG2 is not a catalytic component but is required for all known catalytic activities. DNA cleavage occurs in 2 steps: a first nick is introduced in the top strand immediately upstream of the heptamer, generating a 3'-hydroxyl group that can attack the phosphodiester bond on the opposite strand in a direct transesterification reaction, thereby creating 4 DNA ends: 2 hairpin coding ends and 2 blunt, 5'-phosphorylated ends. The chromatin structure plays an essential role in the V(D)J recombination reactions and the presence of histone H3 trimethylated at 'Lys-4' (H3K4me3) stimulates both the nicking and haipinning steps. The RAG complex also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. The introduction of DNA breaks by the RAG complex on one immunoglobulin allele induces ATM-dependent repositioning of the other allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. In addition to its endonuclease activity, RAG1 also acts as a E3 ubiquitin-protein ligase that mediates monoubiquitination of histone H3. Histone H3 monoubiquitination is required for the joining step of V(D)J recombination.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-3097R-CY5)

Fournisseur:  Bioss
Description:   Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement.
UOM:  1 * 100 µl

Fournisseur:  Bioss
Description:   Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-3097R-CY7)

Fournisseur:  Bioss
Description:   Protein kinase involved in the regulation of transcription. Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. This complex is inactive when in the 7SK snRNP complex form. Phosphorylates EP300, MYOD1, RPB1/POLR2A and AR, and the negative elongation factors DSIF and NELF. Regulates cytokine inducible transcription networks by facilitating promoter recognition of target transcription factors (e.g. TNF-inducible RELA/p65 activation and IL-6-inducible STAT3 signaling). Promotes RNA synthesis in genetic programs for cell growth, differentiation and viral pathogenesis. P-TEFb is also involved in cotranscriptional histone modification, mRNA processing and mRNA export. Modulates a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3; integrates phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing. The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in vitro. Replication stress response protein; the CDK9/cyclin-K complex is required for genome integrity maintenance, by promoting cell cycle recovery from replication arrest and limiting single-stranded DNA amount in response to replication stress, thus reducing the breakdown of stalled replication forks and avoiding DNA damage. In addition, probable function in DNA repair of isoform 2 via interaction with KU70/XRCC6. Promotes cardiac myocyte enlargement.
UOM:  1 * 100 µl
Appel de prix
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Ces articles ne peuvent être ajoutés au Panier. Veuillez contacter votre service client ou envoyer un e-mail à vwr.be@vwr.com
Une documentation supplémentaire peut être nécessaire pour l'achat de cet article. Un représentant de VWR vous contactera si nécessaire.
Ce produit a été bloqué par votre organisation. Contacter votre service d'achat pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
8 865 - 8 880  de 287 569