cell+culture+flasks
Numéro de catalogue:
(BOSSBS-6560R-FITC)
Fournisseur:
Bioss
Description:
The Oxysterol-binding protein (OSBP) family of proteins consist of OSBP (OSBP1) and OSBP2 (ORP-4), which share a high overall similarity. OSBPs are involved in lipid metabolism and signal transduction, as well as vesicle transport, and can translocate to the periphery of Golgi membranes when they are bound to oxysterols. The OSBP protein transports sterols from lysosomes to the nucleus, where sterols downregulate the genes for HMG synthetase, HMG-CoA reductase and the low density lipoprotein receptor (LDLR). OSBP localizes to the cytosol and is widely expressed, while OSBP2 is mainly detected in testis, retina and fetal liver. The extracellular signal-regulated kinase (ERK) signaling pathway is controlled by OSBP via its cholesterol-binding properties. OSBP binds with a high affinity to 25-hydroxy-cholesterol (25-HC), a suppressor of cholesterol synthesis gene transcription in cultured cells.
UOM:
1 * 100 µl
Fournisseur:
Thermo Scientific
Description:
Process a range of general purpose applications including cell culture, microplate, bioproduction, blood separation and microbiology with the Thermo Scientific™ Multifuge™ X4 Pro centrifuge series featuring new touch screen technology, making daily tasks easier.
Fournisseur:
STEMBIOSYS
Description:
CELLvo ™ Human Cord Blood Endothelial Progenitor Cells have superior colony forming ability, greater vessel formation, and greater angiogenic potential compared to more common endothelial-type cells (HUVECs), CELLvo™ hCB-EPCs are the endothelial cell of choice for researchers.
Fournisseur:
Biotium
Description:
This MAb recognizes human 17-26 kDa protein, which is identified as cytokine TNF-alpha (Tumor Necrosis Factor-alpha). TNF-alpha can be expressed as a 17 kDa free molecule, or as a 26 kDa membrane protein. TNF-alpha is a protein secreted by lipopolysaccharide-stimulated macrophages, and causes tumor necrosis when injected into tumor bearing mice. TNF alpha is believed to mediate pathogenic shock and tissue injury associated with endotoxemia. TNF alpha exists as a multimer of two, three, or five non-covalently linked units, but shows a single 17 kDa band following SDS PAGE under non-reducing conditions. TNF alpha is closely related to the 25 kDa protein Tumor Necrosis Factor beta (lymphotoxin), sharing the same receptors and cellular actions. TNF alpha causes cytolysis of certain transformed cells, being synergistic with interferon gamma in its cytotoxicity. Although it has little effect on many cultured normal human cells, TNF alpha appears to be directly toxic to vascular endothelial cells. Other actions of TNF alpha include stimulating growth of human fibroblasts and other cell lines, activating polymorphonuclear neutrophils and osteoclasts, and induction of interleukin 1, prostaglandin E2 and collagenase production. TNF alpha is currently being evaluated in treatment of certain cancers and AIDS Related Complex.
Fournisseur:
Biotium
Description:
This MAb recognizes human 17-26 kDa protein, which is identified as cytokine TNF-alpha (Tumor Necrosis Factor-alpha). TNF-alpha can be expressed as a 17 kDa free molecule, or as a 26 kDa membrane protein. TNF-alpha is a protein secreted by lipopolysaccharide-stimulated macrophages, and causes tumor necrosis when injected into tumor bearing mice. TNF alpha is believed to mediate pathogenic shock and tissue injury associated with endotoxemia. TNF alpha exists as a multimer of two, three, or five non-covalently linked units, but shows a single 17 kDa band following SDS PAGE under non-reducing conditions. TNF alpha is closely related to the 25 kDa protein Tumor Necrosis Factor beta (lymphotoxin), sharing the same receptors and cellular actions. TNF alpha causes cytolysis of certain transformed cells, being synergistic with interferon gamma in its cytotoxicity. Although it has little effect on many cultured normal human cells, TNF alpha appears to be directly toxic to vascular endothelial cells. Other actions of TNF alpha include stimulating growth of human fibroblasts and other cell lines, activating polymorphonuclear neutrophils and osteoclasts, and induction of interleukin 1, prostaglandin E2 and collagenase production. TNF alpha is currently being evaluated in treatment of certain cancers and AIDS Related Complex.
Fournisseur:
Biotium
Description:
This MAb recognizes human 17-26 kDa protein, which is identified as cytokine TNF-alpha (Tumor Necrosis Factor-alpha). TNF-alpha can be expressed as a 17 kDa free molecule, or as a 26 kDa membrane protein. TNF-alpha is a protein secreted by lipopolysaccharide-stimulated macrophages, and causes tumor necrosis when injected into tumor bearing mice. TNF alpha is believed to mediate pathogenic shock and tissue injury associated with endotoxemia. TNF alpha exists as a multimer of two, three, or five non-covalently linked units, but shows a single 17 kDa band following SDS PAGE under non-reducing conditions. TNF alpha is closely related to the 25 kDa protein Tumor Necrosis Factor beta (lymphotoxin), sharing the same receptors and cellular actions. TNF alpha causes cytolysis of certain transformed cells, being synergistic with interferon gamma in its cytotoxicity. Although it has little effect on many cultured normal human cells, TNF alpha appears to be directly toxic to vascular endothelial cells. Other actions of TNF alpha include stimulating growth of human fibroblasts and other cell lines, activating polymorphonuclear neutrophils and osteoclasts, and induction of interleukin 1, prostaglandin E2 and collagenase production. TNF alpha is currently being evaluated in treatment of certain cancers and AIDS Related Complex.
Fournisseur:
Thermo Scientific
Description:
Process a range of general-purpose applications including cell culture, microplate, bioproduction, blood separation, and microbiology with the Thermo Scientific™ Multifuge™ X4 Pro centrifuge series featuring new touch screen technology, making daily tasks easier.
Fournisseur:
STEMBIOSYS
Description:
CELLvo™ Human Adipose Derived - Mesenchymal Stem Cells are adult multipotent stem cells cryopreserved at passage 2.
Numéro de catalogue:
(BOSSBS-11498R-A350)
Fournisseur:
Bioss
Description:
Olfactory sensory neurons contain olfactory receptors, which are G protein-coupled receptor proteins that localize to the cilia and display affinity for and bind to a variety of odor molecules. Olfactory neurons send their axons from the olfactory epithelium to the olfactory bulb, which is covered by the CNS basal lamina. FEZF1 (Fez family zinc finger protein 1), also known as Forebrain Embryonic Zinc Finger and Zinc finger protein 312B, is a 475 amino acid nuclear protein that is expressed in the olfactory epithelium and hypothalamus of mice. In FEZF1-deficient mice, axons of olfactory neurons do not reach the olfactory bulb, suggesting that FEXF1 is required for the penetration of olfactory axons though the basal lamina before innervation of the olfactory bulb. When FEZF1 translocates to the nucleus, it induces KRAS overexpression, resulting in activation of ERK-signaling. Overexpression of FEZF1 leads to accelerated proliferation in cultured cells and increased tumor mass in mice. There are three isoforms of FEZF1 that are produced as a result of alternative splicing events.
UOM:
1 * 100 µl
Numéro de catalogue:
(735-0274)
Fournisseur:
Thermo Fisher Scientific
Description:
Les processeurs de particules magnétiques KingFisher™ sont conçus pour automatiser le traitement fastidieux des échantillons d'acides nucléiques, de protéines ou de cellules de pratiquement n'importe quelle source (sang, cultures cellulaires, lysats tissulaires, sol, selles, par exemple). La gamme KingFisher™ se compose de quatre instruments présentant des rendements et des capacités de volume différents pour répondre aux divers besoins de traitement d'échantillons. Chaque système est constitué d'un instrument, de consommables spécifiques et d'un logiciel. Les systèmes KingFisher™ offrent une purification de haute qualité, rapide et reproductible de l'ADN, de l'ARN, des protéines et des cellules pour divers types d'applications en aval, y compris la génomique et la protéomique, le dépistage des drogues, la médecine légale, la détection des biomarqueurs, le contrôle qualité et les tests vétérinaires.
UOM:
1 * 1 ST
Numéro de catalogue:
(BOSSBS-1135R-A750)
Fournisseur:
Bioss
Description:
c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labelling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c-Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c-Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr --> Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1135R-CY5.5)
Fournisseur:
Bioss
Description:
c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c-Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c-Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr -->Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1135R-A647)
Fournisseur:
Bioss
Description:
c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c-Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c-Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr -->Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1135R-A488)
Fournisseur:
Bioss
Description:
c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c-Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c-Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr -->Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1135R-CY3)
Fournisseur:
Bioss
Description:
c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c-Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c-Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr -->Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.
UOM:
1 * 100 µl
Numéro de catalogue:
(BOSSBS-1135R-A350)
Fournisseur:
Bioss
Description:
c-Src tyrosine kinase plays a critical role in signal transduction downstream of growth factor receptors, integrins and G protein-coupled receptors. We used stable isotope labeling with amino acids in cell culture (SILAC) approach to identify additional substrates of c-Src tyrosine kinase in human embryonic kidney 293T cells. We have identified 10 known substrates and interactors of c-Src and Src family kinases along with 26 novel substrates. We have experimentally validated 4 of the novel proteins (NICE-4, RNA binding motif 10, FUSE-binding protein 1 and TRK-fused gene) as direct substrates of c-Src using in vitro kinase assays and cotransfection experiments. Significantly, using a c-Src specific inhibitor, we were also able to implicate 3 novel substrates (RNA binding motif 10, EWS1 and Bcl-2 associated transcription factor) in PDGF signaling. Finally, to identify the exact tyrosine residues that are phosphorylated by c-Src on the novel c-Src substrates, we designed custom peptide microarrays containing all possible tyrosine-containing peptides (312 unique peptides) and their mutant counterparts containing a Tyr -->Phe substitution from 14 of the identified substrates. Using this platform, we identified 34 peptides that are phosphorylated by c-Src. We have demonstrated that SILAC-based quantitative proteomics approach is suitable for identification of substrates of nonreceptor tyrosine kinases and can be coupled with peptide microarrays for high-throughput identification of substrate phosphopeptides.
UOM:
1 * 100 µl
Appel de prix
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Ces articles ne peuvent être ajoutés au Panier. Veuillez contacter votre service client ou envoyer un e-mail à vwr.be@vwr.com
Une documentation supplémentaire peut être nécessaire pour l'achat de cet article. Un représentant de VWR vous contactera si nécessaire.
Ce produit a été bloqué par votre organisation. Contacter votre service d'achat pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
|
|||||||||