Garder ma session ouverte ?
Expiré dans 
La session est expirée
Votre session a expiré. Pour votre sécurité, VWR vous a déconnecté.
Voulez-vous vous connecter à nouveau?
  • Résultats des produits
  • Catégorie de produit
  • Critères
  • Fournisseur
  • Affiner fournisseurs
    Trier par:

  • Articles en promotion
Votre recherche pour:

Ace+Method+Development+Kits


102 231  les résultats ont été trouvés

SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-HORIZONTAL
 
 
SearchResultCount:"102231"
  Vue liste Recherche Easy View Vue simple
Trier par:
 
 
 
 

Numéro de catalogue: (BOSSBS-1861R-A680)

Fournisseur:  Bioss
Description:   The PAX5 gene is a member of the paired box (PAX) family of transcription factors. The central feature of this gene family is a novel, highly conserved DNA-binding motif, known as the paired box. The PAX proteins are important regulators in early development, and alterations in the expression of their genes are thought to contribute to neoplastic transformation. The PAX5 gene encodes the B-cell lineage specific activator protein (BSAP) that is expressed at early, but not late stages of B-cell differentiation. Its expression has also been detected in developing CNS and testis, therefore, PAX5 gene product may not only play an important role in B-cell differentiation, but also in neural development and spermatogenesis.
UOM:  1 * 100 µl
Fournisseur:  VWR Chemicals
Description:   Phenol Chloroform 5:1 Solution. An optimised mixture that can be used directly to replace the phenol and chloroform recommended in the one-step phenol purification method.
UOM:  1 * 400 mL
Fournisseur:  Merck
Description:   tétra-Sodium diphosphate décahydraté, EMSURE® ACS, Reag. Ph. Eur. pour analyses, Supelco®
Numéro de catalogue: (BOSSBS-11435R-A350)

Fournisseur:  Bioss
Description:   Acts as a "third messenger" substrate of protein kinase C-mediated molecular cascades during synaptic development and remodeling. Binds to calmodulin in the absence of calcium (By similarity).
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-11435R-A555)

Fournisseur:  Bioss
Description:   Acts as a "third messenger" substrate of protein kinase C-mediated molecular cascades during synaptic development and remodeling. Binds to calmodulin in the absence of calcium (By similarity).
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-6129R-A647)

Fournisseur:  Bioss
Description:   Ligand for members of the frizzled family of seven transmembrane receptors. May play an important role in the development and differentiation of certain forebrain structures, notably the hippocampus.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-4264R-CY5)

Fournisseur:  Bioss
Description:   May regulate transcription during sexual development.
UOM:  1 * 100 µl
Fournisseur:  Thermo Scientific
Description:   Ammonium amidosulfonate ≥98% ACS
Numéro de catalogue: (BOSSBS-11597R-A680)

Fournisseur:  Bioss
Description:   Transcription factors, OTX1 and OTX2, are two murine homologs of the Drosophila orthodenticle (OTD), show a limited amino acid sequence divergence. OTX1 and OTX2 play an important role during early and later events required for proper brain development in that they are involved in the processes of induction, specification and regionalization of the brain. OTX1 is involved in corticogenesis, sensory organ development and pituitary functions, while OTX2 is necessary earlier in development, for the correct anterior neural plate specification and organization of the primitive streak. OTX2 is also required in the early specification of the neuroectoderm, which is destined to become the fore-midbrain, and both OTX1 and OTX2 co-operate in patterning the developing brain through a dosage-dependent mechanism. A molecular mechanism depending on a precise threshold of OTX proteins is necessary for the correct positioning of the isthmic region and for anterior brain patterning. The genes which encode OTX1 and OTX2 map to human chromosomes 2p13 and 14q21-q22, respectively.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-11597R-A750)

Fournisseur:  Bioss
Description:   Transcription factors, OTX1 and OTX2, are two murine homologs of the Drosophila orthodenticle (OTD), show a limited amino acid sequence divergence. OTX1 and OTX2 play an important role during early and later events required for proper brain development in that they are involved in the processes of induction, specification and regionalization of the brain. OTX1 is involved in corticogenesis, sensory organ development and pituitary functions, while OTX2 is necessary earlier in development, for the correct anterior neural plate specification and organization of the primitive streak. OTX2 is also required in the early specification of the neuroectoderm, which is destined to become the fore-midbrain, and both OTX1 and OTX2 co-operate in patterning the developing brain through a dosage-dependent mechanism. A molecular mechanism depending on a precise threshold of OTX proteins is necessary for the correct positioning of the isthmic region and for anterior brain patterning. The genes which encode OTX1 and OTX2 map to human chromosomes 2p13 and 14q21-q22, respectively.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-12401R-A350)

Fournisseur:  Bioss
Description:   The Notch signaling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its signaling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-12401R-A488)

Fournisseur:  Bioss
Description:   The Notch signaling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its signaling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM:  1 * 100 µl

Fournisseur:  Bioss
Description:   The Notch signaling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its signaling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM:  1 * 100 µl

Fournisseur:  Bioss
Description:   Transcription factors, OTX1 and OTX2, are two murine homologs of the Drosophila orthodenticle (OTD), show a limited amino acid sequence divergence. OTX1 and OTX2 play an important role during early and later events required for proper brain development in that they are involved in the processes of induction, specification and regionalization of the brain. OTX1 is involved in corticogenesis, sensory organ development and pituitary functions, while OTX2 is necessary earlier in development, for the correct anterior neural plate specification and organization of the primitive streak. OTX2 is also required in the early specification of the neuroectoderm, which is destined to become the fore-midbrain, and both OTX1 and OTX2 co-operate in patterning the developing brain through a dosage-dependent mechanism. A molecular mechanism depending on a precise threshold of OTX proteins is necessary for the correct positioning of the isthmic region and for anterior brain patterning. The genes which encode OTX1 and OTX2 map to human chromosomes 2p13 and 14q21-q22, respectively.
UOM:  1 * 100 µl

Fournisseur:  Bioss
Description:   Transcription factors, OTX1 and OTX2, are two murine homologs of the Drosophila orthodenticle (OTD), show a limited amino acid sequence divergence. OTX1 and OTX2 play an important role during early and later events required for proper brain development in that they are involved in the processes of induction, specification and regionalization of the brain. OTX1 is involved in corticogenesis, sensory organ development and pituitary functions, while OTX2 is necessary earlier in development, for the correct anterior neural plate specification and organization of the primitive streak. OTX2 is also required in the early specification of the neuroectoderm, which is destined to become the fore-midbrain, and both OTX1 and OTX2 co-operate in patterning the developing brain through a dosage-dependent mechanism. A molecular mechanism depending on a precise threshold of OTX proteins is necessary for the correct positioning of the isthmic region and for anterior brain patterning. The genes which encode OTX1 and OTX2 map to human chromosomes 2p13 and 14q21-q22, respectively.
UOM:  1 * 100 µl
Numéro de catalogue: (BOSSBS-11849R-A555)

Fournisseur:  Bioss
Description:   The isthmic organizer signals at the mid/hindbrain boundary (MHB) regulate the development and differentiation of the vertebrate caudal midbrain and the anterior hindbrain. The MHB forms at the boundary of expression between homeobox genes Gbx2 and Otx2. Gbx2 and Otx2 play distinct, essential roles in MHB positioning and development. During development, the GBX2 gene is expressed in the anterior hindbrain. Specifically, Gbx2 negatively regulates Otx2 expression along the anterior-posterior axis; Gbx2(-) mutants demonstrate an expanded Otx2 domain. During development, the GBX2 gene is expressed in the anterior hindbrain. Gbx2 is expressed in the adult brain, spleen and female genital tract. The GBX2 gene is over-expressed in human prostate cancer cell lines (TSU-prl, PC3, DU145 and LNCaP). Furthermore, downregulation of Gbx2 expression restricts tumorigenicity in human prostate cancer cell lines, which suggests that Gbx2 expression may be required for growth of malignant prostate cells.
UOM:  1 * 100 µl
Appel de prix
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l'call est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Ces articles ne peuvent être ajoutés au Panier. Veuillez contacter votre service client ou envoyer un e-mail à vwr.be@vwr.com
Une documentation supplémentaire peut être nécessaire pour l'achat de cet article. Un représentant de VWR vous contactera si nécessaire.
Ce produit a été bloqué par votre organisation. Contacter votre service d'achat pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
1 873 - 1 888  de 102 231