To support the ongoing research efforts on Coronavirus SARS-CoV-2 causing COVID-19 disease, we've provided easy access to critical products needed for virus research and detection...
Un laboratoire de contrôle performant garantit l'intégrité du processus de production d'une société, de la validation des matières premières à la vérification du produit fini...
VWR compte déjà parmi les principaux fournisseurs de matériel de coloration spécialisé pour le domaine de la pathologie. Jour après jour, nous élaborons une série de produits pour nos clients du secteur clinique...
Dans notre sélection de produits pour l'enseignement/les écoles, vous découvrirez des produits destinés à l'enseignement de la chimie, de la physique et de la biologie
Nouvelles pointes robotiques premium conductrices et non conductrices, qualité supérieure et performances impeccables, pour des résultats auxquels vous pouvez vous fier.
Avantor Services provides a wide range of specialized services and digital solutions to help you solve complex challenges.
We’ve built our reputation on consistent, comprehensive mastery of day-to-day operations, allowing lab, clinical, and production environments to focus their high-value resources on core scientific priorities.
As our customers’ needs have evolved, so have our capabilities. We have become experts in scientific operations, improving performance with sophisticated solutions and providing guidance on best practices.
You can select and customize services for peak efficiency, quality, and accelerated innovation.
Nos services de production vous aident à concevoir des solutions à façon stérile ou aseptique, selon votre chaier des charges, du petit conditionnement au bulk.
La position unique qu’Avantor occupe sur le marché nous permet non seulement de vous fournir une vaste gamme d’équipements, mais également de vous offrir un service technique de première classe.
L'expérience en ligne d'Avantor évolue pour mieux vous accompagner ! À compter du 4 avril 2025, nos clients seront migrés vers une nouvelle plateforme pour une expérience d'achat en ligne simplifiée.
Description:
CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. DNMT3A is a DNA methyltransferase that is thought to function in de novo methylation, rather than maintenance methylation. The protein localizes to the cytoplasm and nucleus and its expression is developmentally regulated.
Description:
Power Styramide™ Signal Amplification (PSA™) system is one of the most sensitive methods that can detect extremely low-abundance targets in cells and tissues with improved fluorescence signal 10 to 50 times higher than the widely used tyramide (TSA) reagents.
Description:
ASCL4, a basic helix-loop-helix transcription factor, is essential for the determination of cell fate and the development and differentiation of numerous tissues. It could be a transcriptional regulator involved in skin development.Basic helix-loop-helix transcription factors, such as ASCL4, are essential for the determination of cell fate and the development and differentiation of numerous tissues (Jonsson et al., 2004 [PubMed 15475265]).
Description:
FastClick™ 5-TAMRA Alkyne contains both the moiety of FastClick (for assisting click efficiency) and 5-TAMRA fluorophore (as the fluorescence tag) for developing 5-TAMRA-based fluorescent probes.
Description:
2-Ethylbutyric acid is used as the internal standard for determining volatile fatty acids (VFAs) in wastewater from the constructed wetlands. It is used in the determination of both free and fatty acids in milk and milk products by HPLC method with direct derivatisation.
Description:
The ADAM family is composed of zinc-binding proteins that can function as adhesion proteins and/or endopeptidases. They are involved in a number of biologic processes, including fertilization, neurogenesis, muscle development, and immune response.The ADAM family is composed of zinc-binding proteins that can function as adhesion proteins and/or endopeptidases. They are involved in a number of biologic processes, including fertilization, neurogenesis, muscle development, and immune response.
Description:
This reference standard is intended for use in evaluating analytical methods for the determination of selected polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB) congeners, chlorinated pesticides and polybrominated diphenyl ether (PBDE) congeners in marine bivalve mollusk tissue and similar matrices.
Description:
This product is intended for use as a quality control check for methods related to total suspended solids (TSS), total dissolved solids (TDS), and total solids (TS).
Description:
Most upstream protease of the activation cascade of caspases responsible for the TNFRSF6/FAS mediated and TNFRSF1A induced cell death. Binding to the adapter molecule FADD recruits it to either receptor. The resulting aggregate called death-inducing signaling complex (DISC) performs CASP8 proteolytic activation. The active dimeric enzyme is then liberated from the DISC and free to activate downstream apoptotic proteases. Proteolytic fragments of the N-terminal propeptide (termed CAP3, CAP5 and CAP6) are likely retained in the DISC. Cleaves and activates CASP3, CASP4, CASP6, CASP7, CASP9 and CASP10. May participate in the GZMB apoptotic pathways. Cleaves ADPRT. Hydrolyzes the small-molecule substrate, Ac-Asp-Glu-Val-Asp-|-AMC. Likely target for the cowpox virus CRMA death inhibitory protein. Isoform 5, isoform 6, isoform 7 and isoform 8 lack the catalytic site and may interfere with the pro-apoptotic activity of the complex.
Description:
Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.
Description:
Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.
Description:
Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.
Description:
Glutamic Acid Decarboxylase (GAD) catalyzes the conversion of L glutamate to g-aminobutyric acid (GABA), the principal inhibitory neurotransmitter in the brain, and a putative paracrine signal molecule in pancreatic islets. GAD has a restricted tissue distribution. It is highly expressed in the cytoplasm of GABAergic neurons in the central nervous system (CNS) and pancreatic beta cells. It is also present in other non-neuronal tissues such as testis, oviduct and ovary. GAD is also transiently expressed in non-GABAergic cells of the embryonic and adult nervous system, suggesting its involvement in development and plasticity. GAD exists as two isoforms, GAD65 and GAD67 (molecular masses of 65 and 67 kD, respectively) that are encoded by two different genes. GAD65 is an ampiphilic, membraneanchored protein, (585 amino acid residues) and is encoded on human chromosome 10. GAD67 is a cytoplasmic protein (594 amino acid residues) and is encoded on chromosome 2. There is 64% amino acid identity between the two isoforms, with the highest diversity located at the N terminus, which in GAD65 is required for targeting the enzyme to GABA-containing secretory vesicles. The two isoforms appear to have distinct intraneuronal distribution in the brain. GAD65 has been identified as an autoantigen in insulindependent diabetes mellitus (IDDM) and stiff-man syndrome (SMS), IDDM is an autoimmune disease that results from T cell mediated destruction of pancreatic insulin-secreting beta cells. Islet-reactive T cells and primarily to GAD65 (also named beta cell autoantigen) can be detected in peripheral blood of 80% of recent-onset IDD patients and in pre-diabetic high-risk subjects before onset of clinical symptoms. This suggests that GAD may be an important marker in the early stages of the disease.
Description:
Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1.
UOM:
1 * 100 µl
Promotion
,BOSSBS-1300R-CY7EA
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
Appel de prix
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Le stock de cet article est limité mais peut être disponible dans un entrepôt proche de vous. Merci de vous assurer que vous êtes connecté sur le site afin que le stock disponible soit affiché. Si l' est toujours affiché et vous avez besoin d'aide, s'il vous plaît appelez-nous au 016 385 011
Ces articles ne peuvent être ajoutés au Panier. Veuillez contacter votre service client ou envoyer un e-mail à vwr.be@vwr.com
Une documentation supplémentaire peut être nécessaire pour l'achat de cet article. Un représentant de VWR vous contactera si nécessaire.
Ce produit a été bloqué par votre organisation. Contacter votre service d'achat pour plus d'informations.
Le produit original n'est plus disponible. Le remplacement représenté est disponible
Les produits marqués de ce symbole ne seront bientôt plus disponibles - vente jusqu'à épuisement de stock. Des alternatives peuvent être disponibles en recherchant le code article VWR indiqué ci-dessus. Si vous avez besoin d'une assistance supplémentaire, veuillez contacter notre Service Clientèle au 016 385 011.
Ce site utilise des cookies, en provenance de VWR ou de ses partenaires, afin de collecter des informations statistiques sur votre navigation et vous proposer des contenus en accord avec vos préférences, générés en fonction de vos habitudes de navigation. En poursuivant la consultation de ce site, vous approuvez l’utilisation de ces cookies.